886 research outputs found

    Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Full text link
    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.Comment: 32 pages, 8 figures, 1 table. Version accepted by Nuclear Physics

    Estimates of Stellar Weak Interaction Rates for Nuclei in the Mass Range A=65-80

    Get PDF
    We estimate lepton capture and emission rates, as well as neutrino energy loss rates, for nuclei in the mass range A=65-80. These rates are calculated on a temperature/density grid appropriate for a wide range of astrophysical applications including simulations of late time stellar evolution and x-ray bursts. The basic inputs in our single particle and empirically inspired model are i) experimentally measured level and weak decay information, ii) estimates of matrix elements for allowed experimentally-unmeasured transitions based on the systematics of experimentally observed allowed transitions, and iii) estimates of the centroids of the GT resonances motivated by shell model calculations in the fp shell as well as by (n,p) and (p,n) experiments. Transitions involving Fermi resonances (isobaric analog states) are also included and dominate the rates for many interesting proton rich nuclei for which an experimentally-determined ground state lifetime is unavailable. To compare our results with more detailed shell model based calculations we also calculate weak rates for nuclei in the mass range A=60-65 for which Langanke and Martinez-Pinedo have provided rates. The typical deviation in the electron capture and B- decay rates for these ~30 nuclei is less than a factor of two or three for a wide range of temperature and density appropriate for pre-supernova stellar evolution. We also discuss some subtleties associated with the partition functions used in calculations of stellar weak rates and show that the proper treatment of the partition functions is essential for estimating high temperature beta decay rates. Partition functions based on un-converged Lanczos calculations can result in estimates of high temperature beta decay rates that are systematically low.Comment: Tables of rates for nuclei in the mass range A=66-110 are available from J. Prue

    Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation

    Full text link
    We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.Comment: 17 pages, 18 figures. v2: includes additional references and minor corrections/clarifications. v3: includes additional text, figures, and references (matches published version

    Nuclear neutrino energy spectra in high temperature astrophysical environments

    Full text link
    Astrophysical environments that reach temperatures greater than ∼\sim 100 keV can have significant neutrino energy loss via both plasma processes and nuclear weak interactions. We find that nuclear processes likely produce the highest-energy neutrinos. Among the important weak nuclear interactions are both charged current channels (electron capture/emission and positron capture/emission) and neutral current channels (de-excitation of nuclei via neutrino pair emission). We show that in order to make a realistic prediction of the nuclear neutrino spectrum, one must take nuclear structure into account; in some cases, the most important transitions may involve excited states, possibly in both parent and daughter nuclei. We find that the standard technique of producing a neutrino energy spectrum by using a single transition with a Q-value and matrix element chosen to fit published neutrino production rates and energy losses will not accurately capture important spectral features.Comment: 11 pages, 17 figure

    Nuclear weak interaction rates in primordial nucleosynthesis

    Full text link
    We calculate the weak interaction rates of selected light nuclei during the epoch of Big Bang Nucleosynthesis (BBN), and we assess the impact of these rates on nuclear abundance flow histories and on final light element abundance yields. We consider electron and electron antineutrino captures on 3He and 7Be, and the reverse processes of positron capture and electron neutrino capture on 3H and 7Li. We also compute the rates of positron and electron neutrino capture on 6He. We calculate beta and positron decay transitions where appropriate. As expected, the final standard BBN abundance yields are little affected by addition of these weak processes, though there can be slight alterations of nuclear flow histories. However, non-standard BBN scenarios, e.g., those involving out of equilibrium particle decay with energetic final state neutrinos, may be affected by these processes.Comment: 10 pages, 6 figure
    • …
    corecore